-
Lecture 13: Neural networks, Part 2
13.2, EE-566: Lecture 13.2
-
Lecture 13: Neural networks, part 1
13.1, EE-566: Lecture 13.1
-
Lecture 12, Part 2: Generalization theory
12.2, EE-566: Lecture 12.2
-
Lecture 12, Part 1: Kernel methods
12.1, EE-566: Lecture 12.1
-
Lecture 11: SVM, Part 3
11.3, EE-566: Lecture 11.3
-
Lecture 11: Perceptron, Part 2
11.2, EE-566: Lecture 11.2
-
Lecture 11: Logistic Regression, Part 1
11.1, EE-566: Lecture 11.1
-
Lecture 10: PCA
10.3, EE-566: Lecture 10.3
-
Lecture 10: Linear discriminant analysis
10.2, EE-566: Lecture 10.2
-
Lecture 10: Naive Bayes classifier
10.1, EE-566: Lecture 10.1
-
Lecture 9: Nearest neighbor rules, Part 2
9.2, EE-566: Lecture 9.2
-
Lecture 9: L1 Regularization, Part 1
9.1, EE-566: Lecture 9.1
-
Lecture 8.2: Regularization
8.2, EE-566: Lecture 8.2
-
Lecture 8: Least Squares
8.1, EE-566: Lecture 8.1
-
Lecture 7: Maximum Likelihood
7.2, EE-566: Lecture 7.2
Search for ""
Public, Restricted
28
Media
3
Members
- Managers:
- Appears In: